Immobilization of Bacillus licheniformis L-arabinose isomerase for semi-continuous L-ribulose production.

نویسندگان

  • Ye-Wang Zhang
  • Ponnandy Prabhu
  • Jung-Kul Lee
چکیده

Bacillus licheniformis L-arabinose isomerase (BLAI) with a broad pH range, high substrate specificity, and high catalytic efficiency for L-arabinose was immobilized on various supports. Eupergit C, activated-carboxymethylcellulose, CNBr-activated agarose, chitosan, and alginate were tested as supports, and Eupergit C was selected as the most effective. After determination of the optimum enzyme concentration, the effects of pH and temperature were investigated using a response surface methodology. The immobilized BLAI enzyme retained 86.4% of the activity of the free enzyme. The optimal pH for the immobilized BLAI was 8.0, and immobilization improved the optimal temperature from 50 degrees C (free enzyme) to a range between 55 and 65 degrees C. The half life improved from 2 at 50 degrees C to 212 h at 55 degrees C following immobilization. The immobilized BLAI was used for semi-continuous production of L-ribulose. After 8 batch cycles, 95.1% of the BLAI activity was retained. This simple immobilization procedure and the high stability of the final immobilized BLAI on Eupergit C provide a promising solution for large-scale production of L-ribulose from an inexpensive L-arabinose precursor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the molecular determinant for the catalytic efficiency of L-arabinose isomerase from Bacillus licheniformis.

Bacillus licheniformis l-arabinose isomerase (l-AI) is distinguished from other l-AIs by its high degree of substrate specificity for l-arabinose and its high turnover rate. A systematic strategy that included a sequence alignment-based first screening of residues and a homology model-based second screening, followed by site-directed mutagenesis to alter individual screened residues, was used t...

متن کامل

Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.

Bioethanol produced by microbial fermentations of plant biomass hydrolysates consisting of hexose and pentose mixtures is an excellent alternative to fossil transportation fuels. However, the yeast Saccharomyces cerevisiae, commonly used in bioethanol production, can utilize pentose sugars like l-arabinose or d-xylose only after heterologous expression of corresponding metabolic pathways from o...

متن کامل

Metabolic engineering of Lactobacillus plantarum for production of L-ribulose.

L-Ribulose is a rare and expensive sugar that can be used as a precursor for the production of other rare sugars of high market value such as L-ribose. In this work we describe a production process for L-ribulose using L-arabinose, a common component of polymers of lignocellulosic materials, as the starting material. A ribulokinase-deficient mutant of the heterofermentative lactic acid bacteriu...

متن کامل

L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli.

Englesberg, E. (University of Pittsburgh, Pittsburgh, Pa.), R L. Anderson, R. Weinberg, N. Lee, P. Hoffee, G. Huttenhauer, and H. Boyer. l-Arabinose-sensitive, l-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. J. Bacteriol. 84:137-146. 1962-l-Arabinose-negative mutants of Escherichia coli B/r, ara-53 and ara-139, are deficient in the enzyme l-ribulose 5-phosphate 4-epime...

متن کامل

Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.

An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield, has been created by introducing a new bioconversion pathway into the cells. This pathway consists of three enzymes: L-arabinose isomerase (which converts L-arabinose to L-ribulose), D-psicose 3-epimerase (which converts L-ribulose to L-xylulose), and L-xylulose reductase (which converts L-xyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 73 10  شماره 

صفحات  -

تاریخ انتشار 2009